CALCULATION OF THERMODYNAMIC PROPERTIES OF POTASSIUM AT TEMPERATURES OF UP TO 1300°C AND PRESSURES OF UP TO 25 kg/cm²

M.P. Vukalovich, V.N. Zubarev, and L.R. Fokin

80	N66 -184	47
9 2	(ACCESSION NUMBER)	(THRU)
FOR	22	
ACILITY	(PAGES)	(33
ь.	(NASA CR OR TMX OR AD NUMBER)	(CATEGORY)

Translation of "Raschet termodinamicheskikh svoystv kaliya pri temperaturakh do 1300°C i davleniyakh do 25 kG/sm²".

Teploenergetika, Vol.9, No.10, pp.65-72, 1962.

GPO PRICE \$	
CFSTI PRICE(S) \$	
Hard copy (HC)	(7)

ff 653 July 65

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON JANUARY 1966

CALCULATION OF THERMODYNAMIC PROPERTIES OF POTASSIUM AT TEMPERATURES */65
OF UP TO 1300°C AND PRESSURES OF UP TO 25 kg/cm²

M.P. Vukalovich, V.N. Zubarev, and L.R. Fokin

A method of calculating the thermodynamic properties of the superheated and wet vapors of a dissociating ideal gas ($X_2 = 2X$) is further elaborated. Tables of the thermodynamic properties of potassium vapors at up to 1300° C and $\sim 25 \text{ kg/cm}^{\circ}$ are presented, permitting ready calculation of derivatives for the theory of associating gases, at μ = const, forming the basis for computation of dissociating gases.

At present, gases subject to the dissociation reaction $X_2 \not = 2X$ at elevated temperatures are of considerable interest.

For such gases, considered as an equilibrium mixture of reacting ideal monatomic and diatomic components, we compiled in an explicit form a Table of first-order partial derivatives for the thermodynamic parameters: pressure p, temperature T, degree of dissociation α , as well as for the unit quantities volume v, entropy s, enthalpy i, intrinsic energy u (Table 1).

The method of constructing Tables of this kind, with derivatives expressed in a general form, is described elsewhere [for example (Bibl.1)]. To convert the partial derivatives to their explicit form, we used the equation of state of an ideal dissociating gas (Bibl.2, 3):

$$v = \frac{R\Gamma(1+a)}{\mu_2 \rho} \,, \tag{1}$$

^{*} Numbers in the margin indicate pagination in the original foreign text.

where

 $R = 847.83 \text{ kg-m/kmol/}^{\circ} K$ is the universal gas constant;

- $\alpha = \left(1 + \frac{4p}{K_e}\right)^{-12}$ is the degree of dissociation of the reaction $X_2 = 2X$, the ratio of the reacted number of moles X_2 to the original number;
- Ke is the equilibrium constant, determined by the conventional method (Bibl.3, 4) in accordance with the difference in standard isobarisotherm potentials of the components; for a mixture of ideal /66 gases Ke is a function of temperature alone, in accordance with the equation

$$\left(\frac{\partial \ln K_{\rm e}}{\partial \Gamma}\right)_{\rm p} = \frac{\Delta I^{\rm o}}{\Lambda R \Gamma^{\rm i}} \cdot \left|$$

where

 $\Delta I^{o} = D_{o}^{o} + 2(I^{o} - I_{o}^{o})_{1} - (I^{o} - I_{o}^{o})_{2}$ is the thermal effect of the reaction per kilomole of X_{2} ;

 D_0° is the heat of dissociation per mole of X_2 for $T = O^{\circ}K$;

 $I^{\circ} - I^{\circ}_{\circ}$ is the standard enthalpy per mole of component, computed from the state of I°_{\circ} at $T = 0^{\circ}K$;

$$1/A = 426.94 \text{ kg-m/kcal.}$$

The subscripts 1 and 2 refer to the components X_1 and X_2 , respectively; the superscript 0 denotes the ideal-gas state at p = 1 atm (phys).

The derivatives are more conveniently determined by means of parameters other than molar, since the molecular weight of the reacting mixture is a variable and the thermodynamic relations usually apply to systems with a constant mass.

TABLE 1 FIRST-ORDER PARTIAL DERIVATIVES OF DISSOCIATING IDEAL GAS $|X_2| \Rightarrow 2X$

			pv = -	$\frac{RT(1+\alpha)}{\mu_{\alpha}} \colon \ \xi = \frac{\alpha(1-\alpha)}{2}$	$\frac{a}{ART}$; $h = \frac{\Delta I^0}{ART}$	and the second of the second o	
	p = const ==	T == const	v = const	e = const	i = const	u = const	a == const == #
•		1	$-\frac{1+h\cdot\xi}{T}$	$-\frac{c_{y}}{T}$	- c,	Apr (1 + M)	<u> </u>
ır		-	$-(1+\xi)\frac{v}{p}$	$\frac{A(1+h\cdot\xi)\sigma}{T}$	— A ·h ·€ •v	AE (1 - h) o	1(1+0)
*	1 + h·t	$(1+\xi)\frac{\sigma}{P}$.	C ₀ (1 + ξ) ∇	$-\left[\frac{c_{y}(1+\xi)}{1}+\frac{1}{2}\right]$	<u>c, (1 + 1) 0</u>	\$ (1.+ a) (1 - h).v
••	<u>.</u>	$\frac{A(1+h\xi)\sigma}{T}$	$-\frac{c_{\sigma}(1+\mathfrak{t})\ \sigma}{p\cdot T}$	-	_Acpt	Ac, (1 + 1) v	$\frac{-\frac{\xi (1+\alpha)}{\mu_0 \rho T} (2\alpha c_{\rho 1}^0 + + + (1-\alpha)c_{\rho 2}^0 - AR(1+\alpha)h}{+ (1-\alpha)c_{\rho 2}^0 - AR(1+\alpha)h}$
N	. c,	A·h·ţ·v	$ \left[\frac{c_v (1+\xi)}{P} + \frac{A(1+\xi h) \cdot v}{T} \right] v $	Ac po	-	$Ac_{\phi}(1+\xi)\sigma - A\sigma \Big[c_{\phi} - \frac{A(1+\delta)}{T}\Big]$	- ((+ a) × Pho × (resp.) c _{p2})
*	$c_p = \frac{Apv(1+h \xi)}{T}$	A-\$ (A — 1) •	$-\frac{c_v(1+\xi)v}{p}$	- Ac, (1 + 1) v	$Av\left[c_{p} - \frac{A(1+h\cdot\xi)pv}{T}\right] - Ac_{q}(1+\xi) \cdot v$	e V	ξ (1 + α) × ρμ _α ×
	A E (1 + a)	<u> </u>	<u>_{(1+a)(h−1)v</u>	$\frac{\xi(1+a)}{\mu_{a}\rho_{I}} \{2ac_{\rho_{I}}^{0} + \\ +(1-a)c_{\rho_{I}}^{0} -AR(1+a)h^{\frac{1}{2}}$	$\frac{\frac{\lfloor (1+a) \rceil}{\rho \mu_0} \times}{\times \lfloor 2ac^0 \rho_1 + (1-a) \frac{a^0}{\rho^2} \rfloor}$	$\frac{\frac{t(1+a)}{p\mu_0} \times}{x^{(2ac_{V_1}^0+(1-a)c_{V_2}^0)}}$	-

To find the value of $\left(\frac{\partial x}{\partial y}\right)_z$ in Table 1, the expression in the row ∂x of the column z = const must be divided by the expression in the row ∂y . For example, $\left(\frac{\partial i}{\partial s}\right)_p = c_p / \frac{c_p}{T} = T$.

It should be emphasized that the condition α = const is equivalent to the condition μ = const since, according to another paper (Bibl.3), $\mu = \frac{\mu_2}{1+\alpha}$ for a dissociating mixture. Moreover, it is possible to convert from the variable α to the variable μ by means of the relation $d\mu = -\frac{\mu}{1+\alpha}d\alpha$. Earlier (Bibl.3), we stated that a dissociating gas may be regarded as a model of an elementary

ideal associating gas. In the light of this reasoning, a complete set of easily calculated derivatives may be of interest to the further elaboration of the theory of associating gases, particularly when μ = const.

Certain derivatives in Table 1 represent the specific heats c_p and c_v of the dissociating mixture. The expressions for specific heat c_p and certain other derivatives are provided elsewhere [for example (Bibl.2, 4, 5)]. The specific heat in the presence of a constant pressure is

$$c_{p} = \frac{1}{\mu_{s}} \left[2ac_{p_{1}} + (1-a)c_{p_{3}} + \right] + AR(1+a)\xi h^{s} | kcal/kg/deg$$
 (2)

where (and henceforth)

$$\xi = \frac{\alpha (1-a)}{2}, \quad h = \frac{\Delta I^a}{ART}.$$

The formula for c, can be obtained by means of the relation

$$c_{p} - c_{v} = -T \left(\frac{\partial v}{\partial T} \right)_{p}^{2} / \left(\frac{\partial v}{\partial p} \right)_{T},$$

which implies (Table 1)

$$c_n = c_p - \frac{AR(1+\alpha)(1+\xi \cdot h)^2}{\mu_2(1+\xi)} \operatorname{kcal/kg \cdot deg}$$
(3)

By means of this Table it is not difficult to derive the formulas for the coefficients of thermal expansion α_{τ} and isothermal and adiabatic compressibility β_{τ} and β_{\bullet} .

Below are presented formulas for a number of thermodynamic variables for a dissociating gas $|X_2| \neq 2X$ in the region of superheated and wet vapors, as well as along the saturation curve.

The differential Joule-Thomson effect α_{J-1} in the superheated-vapor region

$$\alpha_{J-t} = \left(\frac{\partial T}{\partial \rho}\right)_t = \frac{\Delta I^{\bullet}(1+a)\xi}{\rho \mu_{\bullet} \cdot c_{\rho}}. \tag{4}$$

If the corresponding quantities p, α , c_p , are referred to the saturation curve, the resultant expression may be used to calculate the Joule-Thomson effect $\alpha_{j-1}^{\text{Hoph}}$ on the saturation curve from the side of the one-phase region.

The quantity $\alpha_{J-1}^{t\,p\,h}$ in the wet-vapor region (and on the saturation curve from the side of the two-phase region) is determined from the Clapeyron-Clausius equation. Henceforth, it will be assumed that $\mathbf{v}^{\P} \ll \mathbf{v}^{\Pi}$ on the saturation curve within the investigated region of parameters.

Then,

$$\alpha_{J-t}^{oph} = \frac{dT}{dp_{sat}} = \frac{ART^2(1+\alpha'')}{\mu_3 \cdot r \cdot p_{sat}}, \qquad (5)$$

where r is the specific heat of vaporization, calculated by the method described elsewhere (Bibl.3). The formula for the specific heat c! at for vapor on the saturation curve is

$$c_{\text{sat}}^{"} = \frac{di''}{dT} - \frac{r}{T} = \left(c_{P}^{"} - \frac{h \cdot \xi'' r}{T} - \frac{r}{T}\right) | \text{kcal/kg/deg}$$
 (6)

Equation (3) can be used for calculating the specific heat cyoph on the saturation curve from the side of the one-phase region. To determine the specific heat cyth on the saturation curve from the side of the two-phase region, eq.(6) by Sychev (Bibl.6) can be used.

This equation yields

$$c_{\bullet}^{"t-ph} = \frac{AR(1+e^{"})}{\mu_{\bullet}} \frac{d \ln v^{"}}{dT} \left(\frac{1+h\xi}{1+\xi} - r_{h\nu}\right) \text{ kcal/kg/deg}$$
 (7)

where

$$r_{hv} = \frac{r\mu_1}{ART(1+a'')}$$

$$a = \sqrt{-gv^* \left(\frac{\partial p}{\partial v}\right)_s}.$$
 (8)

Assuming that, during the propagation of a sound wave in a dissociating vapor, thermodynamic equilibrium may set in at any point and at any time instant, the expression $\left(\frac{\partial p}{\partial v}\right)$ from Table 1 can be used for calculating the so-called "thermodynamic" or equilibrium speed of sound in superheated dissociating vapors that are saturated from the side of the one-phase region. Then,

$$a = \sqrt{g \cdot \frac{c_p}{c_v (1+\xi)} \rho v}. \tag{9}$$

This last formula is a particular case of the equation derived elsewhere (Bibl.5) for calculating the speed of sound in a complex dissociating mixture of gases.

Practical calculations of the speed of sound often are based on the complex $k_{s\,o\,n} = -\frac{v}{p} \left(\frac{\partial p}{\partial v}\right)_s$, which we will term "sonic adiabatic exponent". It is obvious that

$$k_{son} = \frac{c_{\rho}}{c_{\bullet}(1+\xi)}. \tag{10}$$

for a dissociating gas.

The flow processes of wet vapors are one of the most complex fields of gas and hydrodynamics. Of special importance here are the problems of thermodynamic equilibrium (superscoling of vapors), homogeneity of the medium (formation of drops, their hydrodynamics in a sound wave, their surface energy). The diffi-

culty of solving the problem is aggravated by the effect of specific conditions, which sometimes is decisive and which is difficult to take into account, namely, the formation and removal of liquid films, the irregular moisture content of vapor over the channel cross section, etc.

Nevertheless, when analyzing the flow processes of wet vapor, the values of the speed of sound in some idealized flow may be of interest. To calculate the speed of sound in wet dissociating vapors, we assumed that:

- 1) the vapors are a homogeneous (from the hydrodynamic standpoint) reacting mixture of ideal gases ($X_2 \Rightarrow 2X$);
- 2) the degree of dryness x is sufficiently high; the volume and compressibility of the liquid phase can be neglected here;
- 3) Laplace's equation (8) is valid in calculating the speed of sound.

This mar

sound in a .

Novikov (Bibl. 7) under specific assumptions.

According to this method, we have, for wet vapor at $x \gg 0$,

$$k_{son} = -\frac{v}{p} \left(\frac{\partial p}{\partial v} \right)_{s} = \frac{r_{hv}}{T \left[\frac{d \ln v''}{dT} - \frac{i}{\ell} \left(c_{sof}'' - \frac{i - x}{x} c_{sof}' \right) \right]}$$

$$(11)$$

''a speed of

Percent B

and the speed of sound,

$$a = \sqrt{\frac{-\frac{g \cdot r \cdot x}{AT \left[\frac{d \ln v''}{dT} - \frac{1}{r} \left(c''_{sat} - \frac{1 - x}{x} c'_{sat}\right)\right]}}.$$
 (12)

For dissociating vapor on the saturation curve, c_i, is determined from eq.(6); in addition, we obtain

$$\frac{d \ln v''}{dT} = \frac{1}{T} \left[1 - r_{hv} + \xi'' (h - r_{hv}) \right]. \tag{13}$$

TABLE 2

STATE OF SATURATION

(. · · !
ydş // il	1932 - 19
uos .udo., 4	1,474 1,479 1,479 1,473 1,473 1,572 1,572 1,573 1,512 1,513 1,518 1,518 1,518 1,518
oas/m úd-3 o	4.6.3 4.6.7.7 4.6.7.7 4.6.7.7 5.6.7.7 5.6.3 5.6.3 5.6.3 6.6.
oss/w 'ydo	85.5.2 8.5.3.2 8.5.4.3.3.2 8.5.4.3.3.2 8.5.0.3.3 8.5.0.3.3 8.6.0.3 8.0.3
44/6m2 - cm2/kg	25.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
ga/smo . geb de dop	8.55.55.7.2.2.2.2.5.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6
14-3 2 4 89b - 34/1234	6.27 4.47 4.77 7.17 2.27 2.27 2.27 2.27 2.27 2.27 2
4qo'' ₂ w foo'' 3	0 133 0 133 0 133 0 135 0 135 0 135 0 135 0 126 0 126 0 126 0 126
gap - Ba/lpoa d do.,oby	0.1939 0.2934 0.2147 0.2145 0.2145 0.2113 0.2113 0.2010 0.2034 0.2034 0.2034 0.2034
ycal/kg . deg	6. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19
sot sot e'sot	0.18180 0.18342 0.18343 0.18443 0.19644 0.2030 0.2030 0.2130 0.2235
٠. ت	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.

 $^{\prime}\epsilon_{sat}^{\prime}=0.20080-0.75684\cdot10^{-\prime t}+0.76079\cdot10^{-\gamma t^{\prime}}~(Bibl.,t^{\prime})$

TABLE 3

SUPERHEATED VAPOR

TABLE 3 (cont'd)

														-					
		A 508			_			* son	1.519	56.8	2 3.	624				A Son	26.5	, , , , , , , ,	25.25 25 25 25 25 25 25 25 25 25 25 25 25 2
	0,778	0	545.6 569.4 621.0	66222 66222 6626222 6626222			0,759	0	576.1	636.7	670.3 700.3	727.5			0,723	9	80.2 02.0	659.4 676.2 602.1	32.7.
	2; 3'' ==	50	0.0000 0.032 0.0003 0.0003	0.0940 0.			3,,5	•	123	0027	0832	0.00	**		1	3.	·1	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
kg /cm3	r = 482,	9	0,2033 0,1805 0,1551 0,1546	00000000000000000000000000000000000000		, E	r == 475.0;	25	242	557	0.1443	\$2 5		m s	= 466.2;		2178 1919	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	385
0.5 kg	= 624,6;	,	0,78031 0,78094 0,79818 0,80547	0,82367 0,82369 0,83369 0,84318 0,84318		1.0 kg/cm	= 630.1:	-	l		0,79762 0,89260			2 kg/cm ³	= 636,6; r	-	- 600	0.75441	000
	= 690; 1"	-		7401-02 1770			. 759; 10	_			696.11 696.11 693.07				0,840; 1" ==	-	<u> </u>	674.46 674.46 682.28 689.76	
	t sat =		4.8632 4.5486 4.7849 6.0164	6.9403 6.9940 6.9940 6.3588 6.3588			1 sat	a	3536	5912	2.9399 6.9399 3,0528 6	2763			sat == 0.		·	525	
		Trans	600000 600000 71000000000000000000000000	20000000000000000000000000000000000000					9328	9292	0.9748	9646				-	9.9178	0.9584	9725
	#r	A son	<u> </u>	**************************************				k son	1.511	555	30.0	5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.5				. Son	ļ	605	
	87.	12.00		602 602 705 710 710 710 710 710 710 710 710 710 710				8	551.7 584.4 605.2 624.4	653.7	203.0	720.5				е	598.1 600.3 629.0	66.1.6	0.4
	181 = 0,787	*5	2000 de	0.000 0.000 0.000 0.0700 0.0700			s** = 0.764	3	0,1258 0,1118 0,1021 0,0053	0,0970	0.0827	0.0795			8'' = 0,734	a ₂	0,1230 0,1118 0,1118	0.090	0.0030
/cm³	= 484.5;	63		00000000000000000000000000000000000000		11.1	= 478.9; \$	c _p	0,1971					-	= 470,0;	c,	1953	254	9.53
0,4 Kg/cm	' = 622,8; r	•	0.79361 0.80271 0.81057 0.81760 0.82396	0,83536 0,84056 0,85030 0,85030 0,85913 0,85913		0.7 kg /cm²	= 627.1; r	•	0.77009 0.77903 0.78642 0.79373	0,80003 0,80584 0,81198	00,81641	0.83467	. y	1.5 kg /cm	= 633,8; r	•>	0.74254	2000 2000 2000 2000 2000 2000 2000 200	0,79506
	= 669; 1"		628,92 637,96 646,17 653,85 661,16	6415. 681.69 701.73 71.2			= 722; [11	-	632,76 642,09 650,60 658,55	666.09 673,35 680,43	694.11 694.11	707.45			= 805; 1"	-		ESE:	
	1884	٥	5.1042 5.4125 5.7106 6.0016 6.2877	6.8503 7.1285 7.4053 7.6811 7.9359 8.2301			'sat	<u> </u>	3.0122 3.2216 3.3019 3.5639	7297 8933 0557	3750 3750 5336				'sat	-	5457 6300 7120		200
			0.9351 0.9517 0.9533 0.9714 0.9774					•	0.9197 0.9382 0.9516 0.9614	0.9744	0.9821 0.9848 0.9870	0.9887	(#			•	0,9040 0,9223 0,9364		[
	J. 'J		0.000 0.000 0.000 0.000 0.000 0.000	2525 33		 '	٠. د		8558				ŀ		<u>.</u>	-	5888	-	

							_		-	_		-
		= 0.697	.		601	623.8	548,0		9.8.g	:02:5	710.8	725.6
		3 = (0.1197	_	_	_	_	_	_
		9	1	_				÷.	_	Ĺ	_	_
	E E	1000	3	1	Š	0.1983	0.18	0	0	0.0	0.15	€.
	4 kg /cm	1 64.1		**	- 60000	0.70739	0,71458	0,72115	0.72718	0,73271	0,73785	0,74268
		- 036t P			11 27	657.10	666.48	675,30	683,69	691,71	699,45	706,94
		f saf) B		6113	0.6472	0,6792	0,7106	0,74(2	0.7714	0.8010	0,8303
TABLE 3 (cont'd)		¥.	•		Ş	0.8755	0,8939	1606.0	0.9216	0,9318	0.9402	0.9472
.8	-	1	<u> </u>	-	22	 38	69	85	60	_ e	61	 %
3			¥ son		.502		5	-55	-	9.	-5	-
ABLE					590,4	63.7	650,5	668.3		200.9	715,8	730
Ei		" = 0.70	3		0.1331	0.1122	0.1049	0.0002	0.0048	4160.0	0,0387	0.0866
	-	= 460,1; #	ď		0,2119	181	00,1700	0.1625	0,1559	0.1508	0.1467	0,1435
	3 kg /cm	= 894; l' = 640,8; r = 460,1; s'' = 0,708	-		0,70868	0.72464	0.73140	0.73761	0.74336	0.74866	0.75350	0.75826
		= 604; 200 =	¥::		642.01	661.51	670.31	678.64	20.0	67.76	- 92.TE	8.8
		sat =	a	*:	7887	0.6752	69.69	0.9575	0.9975	0000	1.0767	=
	I .	1	1	<u>ان</u>	3							

	. 4	* Son	5.53.54.68				son	. 586 1.574 1.574
	0,687	•	2000 2000 2000 2000 2000 2000 2000 200		4.2	= 0.67	6	\$8555 58555
	447.9; 5'' 🕦 0		2000000 2000000	14		9,,8	.,	0,1205 0,1134 0,1025 0,0367
m)	= 447,9;	ď	0.1973	N. See	a W.	653,7; r = 442,0; #**	c,	0,1965 0,1859 0,1769 0,1695 0,1634
6 kg /cm	== 649,4; r ==	s	0,68225 0,69011 0,99724 0,70369 0,71517		8 kg /cm	= 653.7;	•	0,67974 0,68663 0,69250 0,69866 0,70401
	= 1 000; 1" =	-	649.44 659.28 678.28 606.80 703.06			1 060; ('' =	1	663,81 673,40 682,49 601,19 690,45
	isat = 1	۵	0,4207 0,4428 0,4645 0,4645 0,5065 0,6268			1 3 3t == 1	Ð	0,3423 0,3586 0,3745 0,4065
		8	0.8285 0.8522 0.88721 0.9026 0.9141				•	0,8393 0,8592 0,8760 0,8901 0,8001
		A son	1,517 1,557 1,557 1,538 1,508		-		№ 50n	1.517 1.536 1.554 1.569 1.569 1.603
	89	ū.	616.4 636.5 655.4 673.3 706.2				9	625.5 645.1 663.6 663.6 661.8 607.9
	451,4; 8" = 0,689	· ° ·	0.1230 0.1169 0.1096 0.1037 0.0989 0.0951			, = 0,677		00000000000000000000000000000000000000
	r = 451.4;	C d J	0,2081 0,1898 0,1789 0,1789 0,1671 0,1624		ı.	= 444,9; 5"	3	0,2037 0,1914 0,1812 0,1727 0,1667 0,1667
5 kg /cm	970; I'' = 647,0; r =	•	0,69368 0,70808 0,71438 0,72013 0,72514		7 kg /cm	= 651.6; r =	•	0.68554 0.68792 0.69463 0.70074 0.71160
	a	-	653,11 662,92 662,92 667,16 689,23 697,24			1 026; 1'	-	656.51 666.43 675.76 664.64 693.11 701.22
	l sat	a	0.5110 0.5372 0.5627 0.6878 0.6123 0.6384			1 sat		0,3757 0,8946 0,4130 0,4310 0,4487 0,4660
		*	0.8510 0.8723 0.8900 0.9168 0.9269 0.9269				•	0,8334 0,8552 0,8736 0,8890 0,0018
	<u>ر</u> د	Pro-	8888888 8888888 88888888			J		22000

-	**.	Son	2.55 2.55 2.55 2.55 2.55 2.55 3.55 3.55	۱ ا]	son	444444
2.3	= 0.67	8	98532 200000		35		6.02.5 6.01.7 6.00.0 7.03.8
	9,, = 0		0,1206 0,1134 0,1025 0,0067		0,0	•	0,123 0,1183 0,1183 0,1067 0,1023
.E	= 442,0	3	0,1965 0,1859 0,1769 0,1695		437.1;	- a	0.2051 0.1039 0.1813 0.1863 0.1695
8 kg /cm*	= 1 050; l'' = 653,7; r = 442,0; g''	•	0.67974 0.68663 0.69250 0.09860	10 kg /cm	= 1 002; 1" = 657.4; r = 407.1; a" = 0.65	-	0,67306 0,67306 0,67306 0,68760 0,69156
	060; (" =	-	663.81 673.40 682.49 601.18 699.45		92; ['' =	-	659.97 0 668.09 0 678.46 0 678.48 0 695.09 0
	tsat == 1	ъ	0,3423 0,386 0,3745 0,3001 0,4065		f sat = 10	 B	0.2694 0.2827 0.8957 0.3094
		•	0,8393 0,8592 0,8760 0,8761 0,8901 0,0019			•	0.8799 0.8324 0.8515 0.8678
		A son	1.517 1.536 1.554 1.569 1.661			* son	1,621 1,538 1,538 1,584
		0	625.5 665.7 66.0 66.7 707.9 707.9			0	636.5 635.4 673.5 706.9
	444.9; \$'' = 0,677	49.	0,1236 0,1173 0,1105 0,1049 0,1004 0,0004		439,4; \$** = 0,668	3	0.1233 0.1160 0.1059 0.1068
пВ.		d _g	0,2037 0,1914 0,1812 0,1727 0,1600		= 439.4; \$.	0,2011 0,1901 0,1808 0,130
7 kg /cm	026; 1' = 651,6; r =		0,86054 0,66792 0,60463 0,70074 0,70637	9 kg /cm	073; I'' = 655,6; r =	•	0.67246 0.67246 0.66591 0.69725
	_	-	25.55.51 25.55.51 25.25.51 25.25.51		1 073; 1"	-	661.32 671.14 687.44 689.29 697.75
	f sat	۵	0.3757 0.3946 0.4130 0.4130 0.4487		= +5,		0,3017 0,3164 0,3307 0,3447 0,3585
		•	0,8334 0,8552 0,8736 0,9016 0,9018				0.8242 0.8455 0.8636 0.8787 0.8916
_	JC		282828		Ų	;	2200

TABLE 3 (cont'd)

	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ř			12 kg	2 kg/cm3								14 kg/cm	1116	Ē		
	1	9.		saf	1 129;	#	r = 432,	7; 811	- 0,659			-	sat = 1	162; 1"	663,8;	= 428		j	
Colored Colo	Column C			•	- 2	* 	1°		- 0	8	A son	۳	۵	1		c _p			A 50n
			0,8079 0,8290 0,8471 0,8471	0.2325 0.2434 0.2542 0.2847	664.95 674.76 684.07 692.95		<u> </u>			644,9 663,5 681,2	1.521 1.537 1.554 1.564	0,8062 0,8279 0,8447	0,2063 0,2156 0,2247	671.32 687.89 690.0)	0.65911 0.66547 0.6713\$	0,1956 0,1868 0,1793	0,1189	652.6 675.5 692.0	22. 1.572 1.572 1.572
					11.72												e de la companya de	- '	
		2				16 49	, Icm								18 49/0	ę.			
0.0 0.709 0.1786 6677.53 0.1902 0.1186 657.7 1.519 0.1915 657.8 1.519 0.1915 657.8 1.519	0.0 0.779			ž	1 192:	999	r == 425	0: 8					sat	1 219:	11	1	=	6.646	
0.000 0.1700 0.1700 0.01212 0.05735 0.1910 0.11215 0.22.3 1.519 0.7730 0.1045 0.55.13 0.1910 0.1171 0.1172 0.0573 0.1172	0.789 0.1786 665.14 0.65785 0.1979 0.1216 652.3 1.519 0.1016 0.1178 0.1178 695.24 0.1979 0.1186 670.4 1.537 0.1979 0.1187 0.1178 0.1188 0.188 0.1888 0.1888 0.1888 0.1888 0.1888 0.1888 0.1888 0.1888 0.1888 0.1888 0.1888 0.1888 0.1888 0.1888 0.1888 0.1888 0.1888 0.1888			8	-	-	, s	_			* son		B		•	5		8	* son
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	888	0.788 0.809 0.809 0.827	0.1786 0.1868 0.1949	668, 14 677,92 697,23		l	<u> </u>		652.3 670.4 670.7	1.519	0,7930	0,1645	675,13	0,65013	0,1946	0,1178	665.7	75.1 68.1
20 kg/cm² 1 sat = 1245; l'' = 671,6; r = 418,4; s'' = 671,6; r	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			2-															
f sot f sot <th< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><th></th><td></td><td></td><td></td><td></td><td>20 kg/c</td><td>ł</td><td></td><td></td><td>200</td><td></td><td></td><td></td><td>22 kg /cm</td><td>7.</td><td></td><td>3</td><td></td></th<>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						20 kg/c	ł			200				22 kg /cm	7.		3	
0.7771 Q.1467 G72.81 Q.64394 Q.1976 Q.1197 Q.1831 Q.1302 G70.81 Q.64404 Q.1924 Q.1101 674.6 0.7771 Q.1467 G72.81 Q.64396 Q.1897 Q.1197 Q.1189 Q.7831 Q.1302 G70.81 Q.64404 Q.1924 Q.1101 674.6 24 kg/cm² 1 sst = 1 292; 1' = 676,1; r = 412,1; s'' = 0.834 9.780 Q.1256 G77.69 Q.63971 Q.1175 G71.0 1.381	0.7771	ပ္		1 to	1 245;	= 671	1	18					sat II	269; 177	673,8;	= 415,	= ,,8	.640	
0.7771	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 1	•	-	-	6,				Ason		4		• •	d ₃	3	ė	A son
°C	°C	88	0.7972	0.1467 0.1583	672,51				-		1.633	0,7831	0,1362	679,81	0,64104	0,1924	0,1161	674.8	1,527
°C	°C		14				·		^A										
°C	*C					24 49/	'cmt												
6,7856 0,1268 677,69 0,63971 0,1947 0,1175 671.0	6,7006 0,1268 677,69 0,63971 0,1947 0,1175 671.0			35.	1 292;	111	1	3											
6,796 0,1268 677,59 0,63871 0,1947 0,1175 671.0	6,7496 0,1268 677,69 0,63971 0,1947 0,1175 671.0		•	•	-	•	٠,	•		Son									
		300							-	1.531									

The relations derived above were used in calculating the corresponding thermodynamic properties of potassium vapors at $500 - 1300^{\circ}$ C for which we had previously (Bibl.3) calculated, in the same range of parameters, the saturation pressures, degrees of dissociation, specific volumes, enthalpies, entropies, and heats of vaporization. In addition, the calculation methods were verified, as was the validity of the basic assumptions. The vapors of potassium were regarded as an equilibrium mixture of dissociating ($K_2 \neq 2K$) monatomic and diatomic ideal gases. The basic source data were taken from Evans (Bibl.8, 9). We assumed a heat of dissociation D_0° (K_2) = 11,842 + 1,000 kcal/mole. The saturated vapor pressure was calculated from the conditions of vapor-liquid equilibrium on the basis of experimental findings (Bibl.10) on the enthalpy of liquid potassium, which were extrapolated from 800 to 1300° C.

Table 2 presents the following thermodynamic properties of saturated potassium vapors: specific heat $c_{s\,s\,t}^{\mu}$, $c_{p\,\circ\,p\,h}^{\mu}$, $c_{p\,\circ\,p\,h}^{\mu}$, and $c_{p\,\circ\,p\,h}^{\mu}$; differential Joule-Thomson effect $\alpha_{j\,\circ\,p\,h}^{\mu}$ and $\alpha_{j\,\circ\,p\,h}^{t\,\circ\,p\,h}$, sonic adiabatic exponent $k_{s\,\circ\,n}^{\mu}$ and $k_{s\,\circ\,n}^{\mu\,t\,\circ\,p\,h}$, and speeds of sound $a_{j\,\circ\,p\,h}^{\mu}$ and $a_{j\,\circ\,p\,h}^{\mu\,\tau\,\circ\,p\,h}$.

The thermodynamic properties of superheated potassium vapors, calculated in this investigation and earlier (Bibl.3), are presented in Table 3. These properties are: degree of dissociation α , specific volume v in m³/kg; enthalpy i in kcal/kg and entropy s in kcal/kg°K, the last two being calculated by taking the state of the condensed phase at t = 0°C and p = 1 atm as the computational basis; specific heats c_p and c_v in kcal/kg/°; sonic adiabatic exponent $k_{s \circ n} = -\frac{v}{p} \left(\frac{\partial p}{\partial v}\right)_s$, and, lastly, speed of sound a in m/sec.

The number of digits in the Tables correspond to the smoothness of the functions, which fundamentally equals ±1 of the last significant figure. The kilocalories in this investigation were calculated according to the GOST State

Standard 8550-61. The acceleration due to gravity was taken as normal: g = 9.80665 m/sec².

The results of the calculations on the superheated-vapor side are represented by the c_p , t-chart (Fig.1), the k_{son} , t-chart (Fig.2) and by the a,s-chart (speed of sound - entropy) (Fig.3), where the latter includes the region of wet vapor up to degree of dryness of $x \ge 0.6$.

An analysis of the findings warrants the following statements:

1. The specific heat c_p of dissociating gases is largely a function of pressure; this is evident from eqs.(2) and (3) and Fig.1; moreover, eq.(2) implies that the isotherms have maxima, cut off by the saturation curve (Fig.1). Owing to the heat of dissociation, the total c_p is considerably higher than the so-called "frozen" specific heat described by the first two terms of eq.(2). /70

The curve of the specific heat cp on the saturation line has an unusual maximum for dissociating ideal potassium vapors. Our earlier calculations (Bibl.3) show that this maximum either gets smoothed out or disappears under real conditions.

The total error in calculating c_p , due to the inaccuracy of source data and particularly due to the error in determining the heat of dissociation, as well as due to neglecting the real conditions of vapor components at 24 kg/cm^2 and 1300°C , does not exceed 15%.

The c_v ,t-chart in the region of the studied parameters resembles the c_p ,t-chart (Fig.1).

2. Like certain other thermodynamic functions, the speed of sound and the "sonic" adiabatic exponent of dissociating gases are largely a function not only of temperature but also of pressure. A similar relationship should occur, e.g. for water vapor, if allowance is made for the above-mentioned similarity be-

Fig.l Specific Heat c, of Dissociating Potassium Vapors Ordinate: kcal/kg/

Fig.2 Sonic Adiabatic Exponent of Dissociating Potassium Vapors

tween the associating (in the sense of Van Der Waals) and dissociating gases.

The k_{son} differs markedly from the ratio of the specific heats c_p/c_v [see eq.(10) and Fig.2] and only tends to the latter along the isobars at a rise in temperature, i.e., when the degree of dissociation $\alpha \rightarrow 1$.

Fig.3 Speed of Sound - Entropy Chart for Potassium Vapors

It should be emphasized that this "sonic" adiabatic exponent k_{son} generally differs from the exponent k, which is determined by the thermal equation of the adiabatic line pv^k = const.

In fact, the exponent k, just as k_{son} , is generally a variable quantity. Following the logarithmic conversion of the adiabatic line and subsequent differentiation with respect to v for s = const, we obtain the connectivity equa-

tion

$$k_{\text{son}} = \frac{\frac{L_{k}}{1 + p \ln v \left(\frac{\partial k}{\partial p}\right)}}{1 + p \ln v \left(\frac{\partial k}{\partial p}\right)}. \tag{14}$$

Obviously, the mentioned divergence between the adiabatic exponents $(k_{s \, o \, n}$ and k) complicates the calculation of flow processes from the most elementary form of the Bernoulli equation.

In this connection, when calculating the critical flow regimes of the dissociating vapors of potassium, it is expedient to determine the rate of flow according to the corresponding values of the heat drop in the i,s-diagram (Bibl.3) and compare them with the speed of sound as given in the tables or in the a,s-diagram (Fig.3).

3. In wet vapor, the "sonic" adiabatic exponent k_{son} is relatively [eq.(11)] independent of the degree of dryness and may, in first approximation, be assumed equal to k_{son}^{ntph} on the isobars (or isotherms).

It should be emphasized that, by contrast with the speed of sound, the exponent $k_{s\,o\,n}^{t\,p\,h}$ is not conceptually related to the restriction on the hydrodynamic homogeneity of the medium.

On the whole, however, the calculation of the speed of sound in dissociating vapors in general, and in dissociating wet vapors in particular, is only of an approximate nature considering that the problems of thermodynamic equilibrium during variations in parameters and during passage of sound waves require further more detailed investigations.

BIBLIOGRAPHY

- 1. Bazhenov, M.A. and Sutyusheva, Sh.Sh.: Zh. Fiz. Khim., Vol.32, p.778, 1958.
- 2. Partington, D.R. and Rakovskiy, A.V.: Course in Chemical Thermodynamics

- (Kurs khimicheskoy termodinamiki). Goskhimtekhizdat, 1932.
- 3. Vukalovich, M.P., Zubarev, V.N., and Fokin, L.R.: Teploenergetika, No.8, 1962.
- 4. Zise, H.: Thermodynamics Vol.III: Tables (Thermodynamik, Bd.III, Tabellen), 1954.
- 5. Epshteyn, P.S.: Lectures on Thermodynamics (Kurs termodinamiki). Gostekhiz-dat. 1948.
- 6. Sychev, V.V.: Inzh. Fiz. Zh., No.7, 1960.
- 7. Novikov, I.I. and Trelin, Yu.S.: Prikl. Mekh. Tekh. Fiz., No.2, 1960.
- 8. Evans, W.H., Jacobson, R., Munson, T.R., and Wagman, D.D.: J. Research NBS, Vol.55, p.83, 1955.
- 9. Griffel, M.: J. Chem. Phys., Vol.21, p.1908, 1953.
- 10. Douglas, T.B., Ball, A.F., Ginnings, D.C., and Davis, W.D.: J. Am. Chem. Soc., Vol.74, p.2472, 1952.